Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Prep Biochem Biotechnol ; : 1-12, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701182

The effect of gradients of elevated glucose and low dissolved oxygen in the addition zone of fed-batch E. coli thermoinduced recombinant high cell density cultures can be evaluated through two-compartment scale-down models. Here, glucose was fed in the inlet of a plug flow bioreactor (PFB) connected to a stirred tank bioreactor (STB). E. coli cells diminished growth from 48.2 ± 2.2 g/L in the stage of RP production if compared to control (STB) with STB-PFB experiments, when residence time inside the PFB was 25 s (34.1 ± 3.5 g/L) and 40 s (25.6 ± 5.1 g/L), respectively. The recombinant granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) production decreased from 34 ± 7% of RP in inclusion bodies (IB) in control cultures to 21 ± 8%, and 7 ± 4% during the thermoinduction production phase when increasing residence time inside the PFB to 25 s and 40 s, respectively. This, along with the accumulation of acetic and formic acid (up to 4 g/L), indicates metabolic redirection of central carbon routes through metabolic flow and mixed acid fermentation. Special care must be taken when producing a recombinant protein in heat-induced E. coli, because the yield and productivity of the protein decreases as the size of the bioreactors increases, especially if they are carried at high cell density.


Thermoinduced recombinant E. coli grew less in a two-compartment scale-down model.Heat-inducible E. coli cultures at a large scale significantly decrease recombinant protein production.The accumulation of acetic and formic acid increases when E. coli is exposed to glucose and oxygen gradients.The axial flow pattern inside the PFB mimics glucose and dissolved oxygen gradients at the industrial scale.

2.
World J Microbiol Biotechnol ; 40(6): 174, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642254

Bacterial extracellular vesicles (BEVs) are non-replicative nanostructures released by Gram-negative and Gram-positive bacteria as a survival mechanism and inter- and intraspecific communication mechanism. Due to BEVs physical, biochemical, and biofunctional characteristics, there is interest in producing and using them in developing new therapeutics, vaccines, or delivery systems. However, BEV release is typically low, limiting their application. Here, we provide a biotechnological perspective to enhance BEV production, highlighting current strategies. The strategies include the production of hypervesiculating strains through gene modification, bacteria culture under stress conditions, and artificial vesicles production. We discussed the effect of these production strategies on BEVs types, morphology, composition, and activity. Furthermore, we summarized general aspects of BEV biogenesis, functional capabilities, and applications, framing their current importance and the need to produce them in abundance. This review will expand the knowledge about the range of strategies associated with BEV bioprocesses to increase their productivity and extend their application possibilities.


Extracellular Vesicles , Gram-Positive Bacteria , Biotechnology
3.
Microb Cell Fact ; 23(1): 41, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38321489

BACKGROUND: Developing effective vaccines against SARS-CoV-2 that consider manufacturing limitations, equitable access, and acceptance is necessary for developing platforms to produce antigens that can be efficiently presented for generating neutralizing antibodies and as a model for new vaccines. RESULTS: This work presents the development of an applicable technology through the oral administration of the SARS-CoV-2 RBD antigen fused with a peptide to improve its antigenic presentation. We focused on the development and production of the recombinant receptor binding domain (RBD) produced in E. coli modified with the addition of amino acids extension designed to improve antigen presentation. The production was carried out in shake flask and bioreactor cultures, obtaining around 200 mg/L of the antigen. The peptide-fused RBD and peptide-free RBD proteins were characterized and compared using SDS-PAGE gel, high-performance chromatography, and circular dichroism. The peptide-fused RBD was formulated in an oil-in-water emulsion for oral mice immunization. The peptide-fused RBD, compared to RBD, induced robust IgG production in mice, capable of recognizing the recombinant RBD in Enzyme-linked immunosorbent assays. In addition, the peptide-fused RBD generated neutralizing antibodies in the sera of the dosed mice. The formulation showed no reactive episodes and no changes in temperature or vomiting. CONCLUSIONS: Our study demonstrated the effectiveness of the designed peptide added to the RBD to improve antigen immunostimulation by oral administration.


COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Adjuvants, Immunologic , COVID-19 Vaccines , Escherichia coli , Administration, Oral , Antigens, Viral , Antibodies, Neutralizing , Peptides , Antibodies, Viral
4.
World J Microbiol Biotechnol ; 39(7): 194, 2023 May 12.
Article En | MEDLINE | ID: mdl-37169980

Terpenes and terpenoids are a group of isoprene-derived molecules that constitute the largest group of natural products and secondary metabolites produced by living things, with more than 25,000 compounds reported. These compounds are synthesized by enzymes called terpene synthases, which include several families of cyclases and enzymes. These are responsible for adding functional groups to cyclized structures. Fungal terpenoids are of great interest for their pharmacological properties; therefore, understanding the mechanisms that regulate their synthesis (regulation of the mevalonate pathway, regulation of gene expression, and availability of cofactors) is essential to direct their production. For this reason, this review addresses the detailed study of the biosynthesis of fungal terpenoids and their regulation by various physiological and environmental factors.


Alkyl and Aryl Transferases , Fungal Proteins , Fungi , Terpenes , Terpenes/metabolism , Fungi/enzymology , Alkyl and Aryl Transferases/metabolism , Fungal Proteins/metabolism
5.
Methods Mol Biol ; 2617: 17-30, 2023.
Article En | MEDLINE | ID: mdl-36656514

The temperature-inducible λpL/pR-cI857 expression system has been widely used to produce recombinant proteins (RPs), especially when it is necessary to avoid the addition of exogenous materials to induce the expression of recombinant genes, preventing contamination of bioprocesses. The temperature increase favors the formation of inclusion bodies (IBs). The temperature upshift could change the metabolism, productivities, cell viability, IBs architecture, and the host cell proteins inside IBs, affecting downstream to obtain the final product. In this contribution, we focus on the relationship between the bioprocesses using temperature increase as inducer, the heat shock response associated with temperature up-shift, the RP accumulation, and the formation of IBs. Here, we describe how to produce IBs and how culture conditions can modulate the composition and architecture of IBs by modifying the induction temperature in RP production.


Escherichia coli , Inclusion Bodies , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Temperature
6.
PLoS One ; 17(11): e0277620, 2022.
Article En | MEDLINE | ID: mdl-36374852

Low temperature and sodium butyrate (NaBu) are two of the most used productivity-enhancing strategies in CHO cell cultures during biopharmaceutical manufacturing. While these two approaches alter the balance in the reciprocal relationship between cell growth and productivity, we do not fully understand their mechanisms of action beyond a gross cell growth inhibition. Here, we used continuous culture to evaluate the differential effect of low temperature and NaBu supplementation on CHO cell performance and gene expression profile. We found that an increase in cell-productivity under growth-inhibiting conditions was associated with the arrest of cells in the G1/G0 phase. A transcriptome analysis revealed that the molecular mechanisms by which low temperature and NaBu arrested cell cycle in G1/G0 differed from each other through the deregulation of different cell cycle checkpoints and regulators. The individual transcriptome changes in pattern observed in response to low temperature and NaBu were retained when these two strategies were combined, leading to an additive effect in arresting the cell cycle in G1/G0 phase. The findings presented here offer novel molecular insights about the cell cycle regulation during the CHO cell bioprocessing and its implications for increased recombinant protein production. This data provides a background for engineering productivity-enhanced CHO cell lines for continuous manufacturing.


Cell Culture Techniques , Cricetinae , Animals , CHO Cells , Resting Phase, Cell Cycle , Cricetulus , Recombinant Proteins/metabolism , Cell Cycle
7.
Antibiotics (Basel) ; 11(5)2022 Apr 22.
Article En | MEDLINE | ID: mdl-35625201

With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic ß subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the ß subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.

8.
Appl Microbiol Biotechnol ; 106(8): 2883-2902, 2022 Apr.
Article En | MEDLINE | ID: mdl-35412129

The overproduction of recombinant proteins in Escherichia coli leads to insoluble aggregates of proteins called inclusion bodies (IBs). IBs are considered dynamic entities that harbor high percentages of the recombinant protein, which can be found in different conformational states. The production conditions influence the properties of IBs and recombinant protein recovery and solubilization. The E. coli growth in thermoinduced systems is generally carried out at 30 °C and then recombinant protein production at 42 °C. Since the heat shock response in E. coli is triggered above 34 °C, the synthesis of heat shock proteins can modify the yields of the recombinant protein and the structural quality of IBs. The objective of this work was to evaluate the effect of different pre-induction temperatures (30 and 34 °C) on the growth of E. coli W3110 producing the human granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) and on the IBs structure in a λpL/pR-cI857 thermoinducible system. The recombinant E. coli cultures growing at 34 °C showed a ~ 69% increase in the specific growth rate compared to cultures grown at 30 °C. The amount of rHuGM-CSF in IBs was significantly higher in cultures grown at 34 °C. Main folding chaperones (DnaK and GroEL) were associated with IBs and their co-chaperones (DnaJ and GroES) with the soluble protein fraction. Finally, IBs from cultures that grew at 34 °C had a lower content of amyloid-like structure and were more sensitive to proteolytic degradation than IBs obtained from cultures at 30 °C. Our study presents evidence that increasing the pre-induction temperature in a thermoinduced system allows obtaining higher recombinant protein and reducing amyloid contents of the IBs. KEY POINTS: • Pre-induction temperature determines inclusion bodies architecture • In pre-induction (above 34 °C), the heat shock response increases recombinant protein production • Inclusion bodies at higher pre-induction temperature show a lower amyloid content.


Inclusion Bodies , Recombinant Proteins , Humans , Escherichia coli/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Recombinant Proteins/biosynthesis , Temperature
9.
Bioprocess Biosyst Eng ; 45(6): 1033-1045, 2022 Jun.
Article En | MEDLINE | ID: mdl-35347387

The selection of highly recombinant protein (RP)-productive Chinese hamster ovary (CHO) cell lines is widely carried out in shake flasks. It is assumed that increases in the operating parameters in shake flasks lead to impairments in cell growth and RP production. These effects in cells metabolism are widely associated with high mass transfers and hydrodynamic stress. This study examined the impact of commonly used operational parameters on growth and specific productivity (qP) of two CHO cell lines differentially secreting a humanized anti-hIL8 monoclonal antibody (mAb) and cultured in 250 ml flasks. The evaluated parameters are filling volume (10, 15, and 20%), shaking frequency (60 and 120 revolutions per minute -rpm-), and orbital diameter (25.4 and 19 mm). The analysis of the oxygen transfer was done in terms of the measured volumetric mass transfer coefficient (kLa) and of the hydrodynamics in terms of power input per unit volume of liquid (P/V), the turbulent eddy length scale measured by the Kolmogorov's microscale of turbulence, the energy dissipation rate, the average shear stress, and the shear rate. Though almost all measured kinetic and stoichiometric parameters remained unchanged, mAb titer included, significant differences were found in maximum cell concentration, 10-45% higher in conditions with lower values of kLa and P/V. Changes in glucose metabolism contributing to qP were only shown in the higher producer cell line. Non-lethal responses to elevated oxygen transfer and shear stress might be present and must be considered when evaluating CHO cell cultures in shake flasks.


Bioreactors , Oxygen , Animals , CHO Cells , Cricetinae , Cricetulus , Oxygen/metabolism , Recombinant Proteins
10.
Mycorrhiza ; 32(2): 177-191, 2022 Mar.
Article En | MEDLINE | ID: mdl-35194685

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs, and the difficulty of growing them in asymbiotic or monoxenic (AMF + root) conditions limits research and their large-scale production as biofertilizer. We hypothesized that a combination of flavanols and strigolactones can mimic complex root signaling during the presymbiotic stages of AMF. We evaluated the germination, mycelial growth, branching, and auxiliary cell clusters formation by Gigaspora margarita during the presymbiotic stage in the presence (or absence) of transformed Cichorium intybus roots in basal culture medium enriched with glucose, a flavonol (quercetin or biochanin A) and a strigolactone analogue (1-Methyl-2-oxindole or indole propionic acid). With quercetin (5 µM), methyl oxindole (2.5 nM), and glucose (8.2 g/L) in the absence of roots, the presymbiotic mycelium of G. margarita grew without cytoplasmic retraction and produced auxiliary cells over 71 days similar to presymbiotic mycelium in the presence of roots but without glucose, strigolactones, and flavonols. Our results indicate that glucose and a specific combination of certain concentrations of a flavonol and a strigolactone might be used in asymbiotic or monoxenic liquid or semisolid cultures to stimulate AMF inoculant bioprocesses.


Mycorrhizae , Plant Roots , Quercetin , Fungi , Germination , Mycelium , Oxindoles , Plant Roots/metabolism , Quercetin/metabolism , Spores , Symbiosis
11.
Curr Res Microb Sci ; 2: 100076, 2021 Dec.
Article En | MEDLINE | ID: mdl-34841365

Bacillus spp. are well known plant growth promoting bacteria (PGPB) and biological control agents (BCA) due to their capacity to synthesize a wide variety of phytostimulant and antimicrobial compounds. B. velezensis 83 is a strain marketed in Mexico as a foliar biofungicide (Fungifree AB™) which has been used for biological control of five different genera of phytopathogenic fungi (Colletotrichum, Erysiphe, Botrytis, Sphaerotheca, Leveillula) in crops of agricultural importance such as mango, avocado, papaya, citrus, tomato, strawberry, blueberry, blackberry and cucurbits, among others. In this work, the potential of plant growth promotion of B. velezensis 83 was evaluated on different phenological stages of tomato plants as well as the biocontrol efficacy of B. velezensis 83 formulations (cells and/or metabolites) against B. cinerea infection on leaves and postharvest fruits. Greenhouse grown tomato plants inoculated with a high concentration (1 × 108 CFU/plant) of B. velezensis 83 yielded 254 tons/Ha•year of which the 64% was first quality tomato (≥100 g/fruit), while the control plants produced less than 184 tons/Ha•year with only 55% of first quality tomato. Additionally, in vitro assays carried out with leaves and fruits, shown that the B. velezensis 83 cells formulation had an efficacy of control of B. cinerea infection of ∼31% on leaves and ∼89% on fruits, while the metabolites formulation had an efficacy of control of less than 10%. Therefore, it was concluded that spores (not the metabolites) are the main antagonism factor of Fungifree AB™. The high effectivity of B. cinerea control on fruits by B. velezensis 83, opens the possibility for a postharvest use of this biofungicide.

12.
ACS Omega ; 6(19): 12439-12458, 2021 May 18.
Article En | MEDLINE | ID: mdl-34056395

Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.

13.
Microb Cell Fact ; 20(1): 88, 2021 Apr 22.
Article En | MEDLINE | ID: mdl-33888152

SARS-CoV-2 is a novel ß-coronavirus that caused the COVID-19 pandemic disease, which spread rapidly, infecting more than 134 million people, and killing almost 2.9 million thus far. Based on the urgent need for therapeutic and prophylactic strategies, the identification and characterization of antibodies has been accelerated, since they have been fundamental in treating other viral diseases. Here, we summarized in an integrative manner the present understanding of the immune response and physiopathology caused by SARS-CoV-2, including the activation of the humoral immune response in SARS-CoV-2 infection and therefore, the synthesis of antibodies. Furthermore, we also discussed about the antibodies that can be generated in COVID-19 convalescent sera and their associated clinical studies, including a detailed characterization of a variety of human antibodies and identification of antibodies from other sources, which have powerful neutralizing capacities. Accordingly, the development of effective treatments to mitigate COVID-19 is expected. Finally, we reviewed the challenges faced in producing potential therapeutic antibodies and nanobodies by cell factories at an industrial level while ensuring their quality, efficacy, and safety.


Antibodies, Viral/therapeutic use , COVID-19 Drug Treatment , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Humans , Immunity, Humoral , Immunity, Innate , Immunoglobulins/chemistry , Immunoglobulins/therapeutic use , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/therapeutic use
14.
FEMS Microbiol Rev ; 45(6)2021 11 23.
Article En | MEDLINE | ID: mdl-33844837

Recombinant protein (RP) production from Escherichia coli has been extensively studied to find strategies for increasing product yields. The thermoinducible expression system is commonly employed at the industrial level to produce various RPs, which avoids the addition of chemical inducers, thus minimizing contamination risks. Multiple aspects of the molecular origin and biotechnological uses of its regulatory elements (pL/pR promoters and cI857 thermolabile repressor) derived from bacteriophage λ provide knowledge to improve the bioprocesses using this system. Here, we discuss the main aspects of the potential use of the λpL/pR-cI857 thermoinducible system for RP production in E. coli, focusing on the approaches of investigations that have contributed to the advancement of this expression system. Metabolic and physiological changes that occur in the host cells caused by heat stress and RP overproduction are also described. Therefore, the current scenario and the future applications of systems that use heat to induce RP production are discussed to understand the relationship between the activation of the bacterial heat shock response, RP accumulation and its possible aggregation to form inclusion bodies.


Escherichia coli , Recombinant Proteins , Bacteriophage lambda/genetics , Escherichia coli/genetics , Inclusion Bodies , Promoter Regions, Genetic , Recombinant Proteins/genetics
15.
Electron. j. biotechnol ; 48: 86-94, nov. 2020. tab, graf, ilus
Article En | LILACS | ID: biblio-1254836

BACKGROUND: Chinese hamster ovary (CHO) cells are the workhorse for obtaining recombinant proteins. Proteomic studies of these cells intend to understand cell biology and obtain more productive and robust cell lines for therapeutic protein production in the pharmaceutical industry. Because of the great importance of precipitation methods for the processing of samples in proteomics, the acetone, methanol-chloroform (M/C), and trichloroacetic acid (TCA)-acetone protocols were compared for CHO cells in terms of protein recovery, band pattern resolution, and presence on SDS-PAGE. RESULTS: Higher recovery and similar band profile with cellular homogenates were obtained using acetone precipitation with ultrasonic bath cycles (104.18 ± 2.67%) or NaOH addition (103.12 ± 5.74%), compared to the other two protocols tested. TCA-acetone precipitates were difficult to solubilize, which negatively influenced recovery percentage (77.91 ± 8.79%) and band presence. M/C with ultrasonic homogenization showed an intermediate recovery between the other two protocols (94.22 ± 4.86%) without affecting protein pattern on SDS-PAGE. These precipitation methods affected the recovery of low MW proteins (< 15 kDa). CONCLUSIONS: These results help in the processing of samples of CHO cells for their proteomic study by means of an easily accessible, fast protocol, with an almost complete recovery of cellular proteins and the capture of the original complexity of the cellular composition. Acetone protocol could be incorporated to sample-preparation workflows in a straightforward manner and can probably be applied to other mammalian cell lines as well.


Animals , Recombinant Proteins , CHO Cells , Proteomics/methods , Acetone , Chemical Precipitation , Solubility , Trichloroacetic Acid , Cell Separation , Chloroform , Cell Culture Techniques , Methanol , Electrophoresis, Polyacrylamide Gel
16.
PLoS One ; 15(8): e0237930, 2020.
Article En | MEDLINE | ID: mdl-32841274

Chinese hamster ovary cells have been the workhorse for the production of recombinant proteins in mammalian cells. Since biochemical, cellular and omics studies are usually affected by the lack of suitable fractionation procedures to isolate compartments from these cells, differential and isopycnic centrifugation based techniques were characterized and developed specially for them. Enriched fractions in intact nuclei, mitochondria, peroxisomes, cis-Golgi, trans-Golgi and endoplasmic reticulum (ER) were obtained in differential centrifugation steps and subsequently separated in discontinuous sucrose gradients. Nuclei, mitochondria, cis-Golgi, peroxisomes and smooth ER fractions were obtained as defined bands in 30-60% gradients. Despite the low percentage represented by the microsomes of the total cell homogenate (1.7%), their separation in a novel sucrose gradient (10-60%) showed enough resolution and efficiency to quantitatively separate their components into enriched fractions in trans-Golgi, cis-Golgi and ER. The identity of these organelles belonging to the classical secretion pathway that came from 10-60% gradients was confirmed by proteomics. Data are available via ProteomeXchange with identifier PXD019778. Components from ER and plasma membrane were the most frequent contaminants in almost all obtained fractions. The improved sucrose gradient for microsomal samples proved being successful in obtaining enriched fractions of low abundance organelles, such as Golgi apparatus and ER components, for biochemical and molecular studies, and suitable for proteomic research, which makes it a useful tool for future studies of this and other mammalian cell lines.


Microsomes/metabolism , Proteomics , Animals , CHO Cells , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Centrifugation , Cricetinae , Cricetulus , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Gene Ontology , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Microsomes/ultrastructure , Mitochondria/ultrastructure , Proteome/metabolism , Software , Subcellular Fractions/metabolism
17.
Bioengineered ; 11(1): 463-471, 2020 12.
Article En | MEDLINE | ID: mdl-32223359

A careful selection of culture mediums and feeds has become necessary to maximize yields of recombinant proteins during bioprocesses of mammalian cells. Supplements contain a variety of concentrate nutrients, and their beneficial effects vary according to recombinant cell lines. In this study, the effects of PowerFeed A on growth kinetics, productivity and cellular metabolism were evaluated for two Chinese hamster ovary cell lines producing a monoclonal antibody in a batch culture. Supplemented cultures increased integral viable cell density of CRL-12444 and CRL-12445 cells by 2.4 and 1.6 times through extension of culture time at which viability was above 90% in 72 and 36 h, respectively, and increment of maximal cell concentration in 3.25 × 106 cells/ml (69%) for CRL-12445 cells. Product titer augmented 1.9 and 2.5 times for CRL-12444 and CRL-12445 cells, respectively, without changes in growth rate and specific productivity. Feed supplementation also stimulated full consumption of glucose and free glutamine and reduced 10 times lactate accumulation, while ammonium, sodium and potassium remained at similar concentrations at the end of the culture. About 44% of calcium, mainly provided by feed, was consumed by both cell lines. Maximization of cellular growth, viability and protein titer through feeding encourages extending its use to other cell lines and exploring novel combinations with other basal mediums or feeds. A thorough investigation of its impact on protein quality and the molecular mechanisms behind these effects will allow designing effective feeds and strategies to rationally optimize protein production in the biomanufacturing industry.


Antibodies, Monoclonal/biosynthesis , Antibody Formation/physiology , Culture Media/pharmacology , Lactic Acid/metabolism , Longevity/physiology , Animals , CHO Cells , Cell Proliferation/drug effects , Cricetinae , Cricetulus
18.
Fungal Biol ; 124(3-4): 205-218, 2020.
Article En | MEDLINE | ID: mdl-32220381

In order to increase survival rates of greenhouse seedlings destined for restoration and conservation programs, successful mycorrhization of the seedlings is necessary. To reforest forest ecosystems, host trees must be inoculated with ectomycorrhizal fungi and, in order to guarantee a sufficient supply of ectomycorrhizal inoculum, it is necessary to develop technologies for the mass production of ectomycorrhizal fungi mycelia. We selected the ectomycorrhizal fungus Laccaria trichodermophora, due to its ecological traits and feasible mycelia production in asymbiotic conditions. Here, we report the field sampling of genetic resources, as well as the highly productive nutritional media and cultivation parameters in solid cultures. Furthermore, in order to achieve high mycelial production, we used strain screening and evaluated pH, carbon source concentration, and culture conditions of submerged cultures in normal and baffled shake flasks. The higher productivity culture conditions in shake flasks were selected for evaluation in a pneumatic bioreactor, using modified BAF media with a 10 g/L glucose, pH 5.5, 25 °C, and a volumetric oxygen transfer coefficient (KLa) of 36 h-1. Under those conditions less biomass (12-37 %) was produced in the pneumatic bioreactor compared with the baffled shake flasks. This approach shows that L. trichodermophora can generate a large biomass concentration and constitute the biotechnological foundation of its mycelia mass production.


Bioreactors/microbiology , Laccaria , Mycelium/growth & development , Mycorrhizae , Agaricales , Biomass , Conservation of Natural Resources , Culture Media/chemistry , Forests , Laccaria/growth & development , Laccaria/isolation & purification , Mycorrhizae/growth & development , Mycorrhizae/isolation & purification , Oxygen/supply & distribution , Seedlings/microbiology , Trees/microbiology
19.
Microb Cell Fact ; 18(1): 200, 2019 Nov 14.
Article En | MEDLINE | ID: mdl-31727078

The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.


Biocatalysis , Environmental Pollutants/metabolism , Laccase , Biodegradation, Environmental , Ecosystem , Fungi/enzymology , Laccase/chemistry , Laccase/metabolism , Plants/enzymology , Water/analysis , Water/chemistry , Water Purification
20.
Cell Stress Chaperones ; 24(4): 777-792, 2019 07.
Article En | MEDLINE | ID: mdl-31165436

The heat-inducible expression system has been widely used to produce recombinant proteins in Escherichia coli. However, the rise in temperature affects cell growth, activates the bacterial Heat-Shock Response (HSR), and promotes the formation of insoluble protein aggregates known as inclusion bodies (IBs). In this work, we evaluate the effect of the culture scale (shake flasks and bioreactors) and induction temperature (39 and 42 °C) on the kinetic behavior of thermoinducible recombinant E. coli ATCC 53606 producing rESAT-6 (6-kDa early-secretory antigenic target from Mycobacterium tuberculosis), compared with cultures grown at 30 °C (without induction). Also, the expression of the major E. coli chaperones (DnaK and GroEL) was analyzed. We found that almost twice maximum biomass and rESAT-6 production were obtained in bioreactors (~ 3.29 g/L of biomass and ~ 0.27 g/L of rESAT-6) than in shake flasks (~ 1.41 g/L of biomass and ~ 0.14 g/L of rESAT-6) when induction was carried out at 42 °C, but similar amounts of rESAT-6 were obtained from cultures induced at 39 °C (~ 0.14 g/L). In all thermo-induced conditions, rESAT-6 was trapped in IBs. Furthermore, DnaK was preferably expressed in the soluble fraction, while GroEL was present in IBs. Importantly, IBs formed at 39 °C, in both shake flasks and bioreactors, were more susceptible to degradation by proteinase-K, indicating a lower amyloid content compared to IBs formed at 42 °C. Our work presents evidence that the culture scale and the induction temperature modify the E. coli metabolic response, expression of chaperones, and structure of the IBs during rESAT-6 protein production in a thermoinducible system.


Antigens, Bacterial/biosynthesis , Bacterial Proteins/biosynthesis , Escherichia coli , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Bioreactors/microbiology , Cloning, Molecular/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Heat-Shock Response , Molecular Chaperones/metabolism , Temperature
...